64 research outputs found

    The Effects of Salt on Rheological Properties of Asphalt after Long-Term Aging

    Get PDF
    Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies

    Determination of Arctic melt pond fraction and sea ice roughness from Unmanned Aerial Vehicle (UAV) imagery

    Get PDF
    Melt ponds on Arctic sea ice are of great significance in the study of the heat balance in the ocean mixed layer, mass and salt balances of Arctic sea ice, and other aspects of the earth-atmosphere system. During the 7th Chinese National Arctic Research Expedition, aerial photographs were taken from an Unmanned Aerial Vehicle over an ice floe in the Canada Basin. Using threshold discrimination and three-dimensional modeling, we estimated a melt pond fraction of 1.63% and a regionally averaged surface roughness of 0.12 for the study area. In view of the particularly foggy environment of the Arctic, aerial images were defogged using an improved dark channel prior based image defog algorithm, especially adapted for the special conditions of sea ice images. An aerial photo mosaic was generated, melt ponds were identified from the mosaic image and melt pond fractions were calculated. Three-dimensional modeling techniques were used to generate a digital elevation model allowing relative elevation and roughness of the sea ice surface to be estimated. Analysis of the relationship between the distributions of melt ponds and sea ice surface roughness shows that melt ponds are smaller on sea ice with higher surface roughness, while broader melt ponds usually occur in areas where sea ice surface roughness is lower

    Optimal Operation Strategy for Multi-Energy Microgrid Participating in Auxiliary Service

    Get PDF
    Since multi-energy microgrid (MEMG) can coordinate various resources to operate as a virtual power plant (VPP), it is an important way to maintain the stable and economic operation of the power systems and decrease the impact of intermittence of distributed energy resources (DERs). However, the potential of MEMG as a VPP has not been thoroughly explored since auxiliary service (AS) market is not fully open for MEMG at present. The relevant challenges include balancing conflict of interests among multiple energy entities, motivating users to adjust flexible loads, integrating multiple flexible resources in energy supply/demand sides and formulating specific policies, etc. To handle these tasks, an optimal operation strategy for MEMG participating in AS is proposed by considering Stackelberg game theory and integrated demand response (IDR). The feasibility of the proposed strategy is validated by a practical MEMG in Hunan, China. The results show that the economic benefits of energy entities are effectively raised and the peak-shaving AS is realized while user satisfaction is also maintained. This work would give reference to the constructor of future AS market to formulate polices about the operation modes and pricing schemes of MEMG

    Quasiparticle characteristics of the weakly ferromagnetic Hund's metal MnSi

    Full text link
    Hund's metals are multi-orbital systems with 3d3d or 4d4d electrons exhibiting both itinerant character and local moments, and they feature Kondo-like screenings of local orbital and spin moments, with suppressed coherence temperature driven by Hund's coupling JHJ_H. They often exhibit magnetic order at low temperature, but how the interaction between the Kondo-like screening and long-range magnetic order is manifested in the quasiparticle spectrum remains an open question. Here we present spectroscopic signature of such interaction in a Hund's metal candidate MnSi exhibiting weak ferromagnetism. Our photoemission measurements reveal renormalized quasiparticle bands near the Fermi level with strong momentum dependence: the ferromagnetism manifests through possibly exchange-split bands (Q1) below TCT_C , while the spin/orbital screenings lead to gradual development of quasiparticles (Q2) upon cooling. Our results demonstrate how the characteristic spin/orbital coherence in a Hund's metal could coexist and compete with the magnetic order to form a weak itinerant ferromagnet, via quasiparticle bands that are well separated in momentum space and exhibit distinct temperature dependence. Our results imply that the competition between the spin/orbital screening and the magnetic order in a Hund's metal bears intriguing similarity to the Kondo lattice systems.Comment: accepted by PR

    Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis

    Get PDF
    In order to increase crop yield in semi-arid and arid areas, plastic film mulching (PFM) is widely used in Northwestern China. To date, many studies have addressed the effects of PFM on soil physical and biochemical properties in rain-fed agriculture in Northwestern China, but the findings of different studies are often contradictory. Therefore, a comprehensive review of the impacts of PFM on soil water content, soil nutrients and food production is needed. We compiled the results of 1278 observations to evaluate the overall effects of PFM on soil water content, the distribution of nitrate and soil organic carbon, and crop yield in rain-fed agriculture in Northwestern China. Our results showed that PFM increased soil moisture and nitrate concentration in topsoils (0–20 cm) by 12.9% and 28.2%, respectively, but slightly decreased (1.8%) soil organic carbon (SOC) content in the 0–10 cm soil layer. PFM significantly increased grain yields by 43.1%, with greatest effect in spring maize (79.4%). When related to cumulative precipitation during the crop growing season, yield increase from PFM was greatest (72.8%) at 200–300 mm, which was attributed to the large increase for spring maize and potato, implying that crop zoning would be beneficial for PFM in this region. When related to N application rate, crop yields benefited most from PFM (80.2%) at 200–300 kg/ha. A cost-benefit analysis indicated that PFM increased economic return by an average of 29.5%, with the best improvement for spring maize (71.1%) and no increase for spring wheat. In conclusion, PFM can significantly increase crop yield and economic return (especially for spring maize) in rain-fed agriculture areas of Northwestern China. Crop zoning is recommended for PFM to achieve the largest economic benefit. However, full account needs to be taken of the environmental impacts relating to N loss, SOC depletion and film pollution to evaluate the sustainability of PFM systems and further research is required to quantify and mitigate these impacts

    Proposed clinical phases for the improvement of personalized treatment of checkpoint inhibitor–related pneumonitis

    Get PDF
    BackgroundCheckpoint inhibitor–related pneumonitis (CIP) is a lethal immune-related adverse event. However, the development process of CIP, which may provide insight into more effective management, has not been extensively examined.MethodsWe conducted a multicenter retrospective analysis of 56 patients who developed CIP. Clinical characteristics, radiological features, histologic features, and laboratory tests were analyzed. After a comprehensive analysis, we proposed acute, subacute, and chronic phases of CIP and summarized each phase’s characteristics.ResultsThere were 51 patients in the acute phase, 22 in the subacute phase, and 11 in the chronic phase. The median interval time from the beginning of CIP to the different phases was calculated (acute phase: ≤4.9 weeks; subacute phase: 4.9~13.1 weeks; and chronic phase: ≥13.1 weeks). The symptoms relieved from the acute phase to the chronic phase, and the CIP grade and Performance Status score decreased (P<0.05). The main change in radiologic features was the absorption of the lesions, and 3 (3/11) patients in the chronic phase had persistent traction bronchiectasis. For histologic features, most patients had acute fibrinous pneumonitis in the acute phase (5/8), and most had organizing pneumonia in the subacute phase (5/6). Other histologic changes advanced over time, with the lesions entering a state of fibrosis. Moreover, the levels of interleukin-6, interleukin-10 and high-sensitivity C-reactive protein (hsCRP) increased in the acute phase and decreased as CIP progressed (IL-6: 17.9 vs. 9.8 vs. 5.7, P=0.018; IL-10: 4.6 vs 3.0 vs. 2.0, P=0.041; hsCRP: 88.2 vs. 19.4 vs. 14.4, P=0.005).ConclusionsThe general development process of CIP can be divided into acute, subacute, and chronic phases, upon which a better management strategy might be based devised
    • …
    corecore